Rapport

Sujet: Taux de couvert forestier par LIDAR

Sommaire

Sι	ıjet : Taux de couvert forestier par LIDAR	1
	Introduction	3
	I. Calcul du taux de couvert forestier	5
	A. A partir des vues panoramiques	5
	B. A partir des données LIDAR	11
	II. Analyse des résultats	13
	A. Premier Modèle général	14
	B. Modèles différenciés suivant l'espèce	16
	Conclusion	19
	Annexe 1	20
	Tête panoramique	20
	Réglage de la parallaxe	20
	Annexe 2	21
	Logiciel GIMP	21
	Traitement des vues panoramiques	21
	Annexe 3	24
	Logiciel GIMP	24
	Calcul du pourcentage des pixels ciel	24
	Annexe 4	25
	Indice du pixel Lidar	25
	Annexe 5	27
	Calcul des coordonnées des placettes	27
	Annexe 6	29
	Création de Buffer	29

Introduction

L'inventaire forestier produit une BD forêt qui décrit la composition et le type de forêt sur tout le territoire. Cette BD est actuellement mesurée sur le terrain ce qui demande beaucoup de ressources humaines et matérielles. Le couvert forestier est l'un des indicateurs les plus utilisés, il sert notamment à délimiter les zones boisées ou à quantifier le volume de bois des forêts. La donnée Lidar permettant de couvrir rapidement de grandes surfaces, elle est une piste pour alléger l'acquisition du taux de couvert.

L'objectif de ce projet est de déterminer si l'indicateur de couverture forestier peut être déduit des seuls échos LIDAR.

Pour cela notre but est de calculer un indicateur de taux forestier à partir des données LIDAR aéroportées et de mettre au point une méthodologie pour établir une vérité terrain.

Ces indicateurs forestiers permettent d'évaluer la couverture du sol. On définit cette notion de couverture du sol essentiellement en fonction de la présence ou de l'absence d'arbres. La couverture du sol dépend :

- De la nature biophysique des principaux éléments végétaux et minéraux présents sur un site
- De leur taux de couvert respectifs
- De la superficie sur laquelle ils s'étendent
- De la largeur de cette superficie.

Nous nous intéresserons notamment à l'influence du type de peuplement forestier.

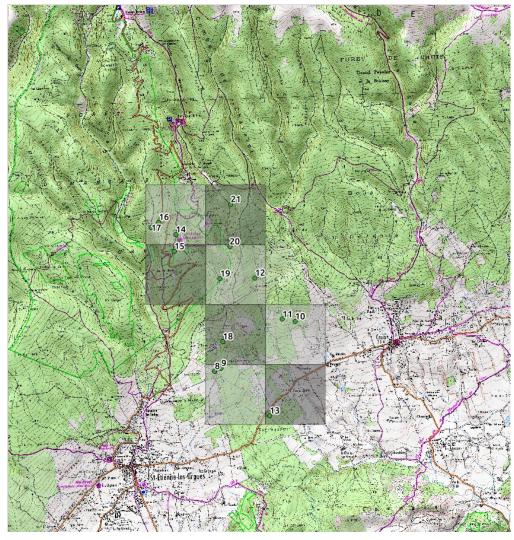
Notre démarche est découpée en trois parties :

Dans une première partie nous voulons réaliser une vérité terrain à partir d'images panoramiques. Pour cela nous utilisons une tête panoramique, le Rodéon. Notre but est de prendre des vues panoramiques dans des zones de forêt les plus diversifiées possible pour avoir une vérité terrain.

Nous calculons dans une deuxième partie l'indicateur du taux de couvert forestier à partir des données lidar que nous traitons à l'aide de différents logiciels notamment Lastools.

Puis dans un dernier temps nous analysons nos résultats et cherchons à trouver un modèle à partir de la vérité terrain.

I. Calcul du taux de couvert forestier


A. A partir des vues panoramiques

Nous voulons obtenir une vérité terrain.

a. Terrain

Définition des placettes

Les données lidar sont établies sur douze zones de 1km². Nous avons donc placé notre vérité terrain sur ces zones. Chaque lieu d'acquisition des photos s'appelle une placette. Celles-ci sont localisées par un piquet sur le terrain. Nous avons choisi les 25 placettes en fonction de la variété du couvert forestier.

Classification des placettes

Numéro placette	Classification BD forêt	Classification terrain
	forêt ouverte de feuillus purs	forêt ouverte (chênes pubescents + arbustes)
2	forêt fermée conifères	forêt fermée (pins noirs + quelques chênes pubescents)
3	forêt ouverte de feuillus purs	forêt ouverte (mélange d'arbustes)
4	forêt fermée à mélange de conifères prépondérants et feuillus	forêt plutôt ouverte feuillus (majoritairement des chênes pubescents)
5	forêt fermée à mélange de conifères prépondérants et feuillus	forêt fermée (majoritairement chênes pubescents)
6	forêt fermée à mélange de conifères prépondérants et feuillus	forêt fermée (chênes pubescents)
7	forêt fermée à mélange de feuillus prépondérants et de conifères	forêt plutôt ouverte (surtout des arbustes et quelques chênes pubescents)
8	forêt fermée à mélange de conifères prépondérants et feuillus	forêt fermée (pins noirs, conifère 7, quelques chênes pubescents)
9	forêt fermée à mélange de conifères prépondérants et feuillus	forêt fermée (mélange chênes pubescents pins noirs)
10	forêt fermée à mélange de feuillus prépondérants et de conifères	forêt fermée (mélange conifère 6 + chênes pubescents)
11	forêt fermée conifères	forêt fermée (majoritairement pins noirs)
12	forêt fermée à mélange de conifères prépondérants et feuillus	forêt fermée (majoritairement conifère 6 + quelques chênes pubescents)
13	forêt fermée à mélange de feuillus prépondérants et de conifères	forêt fermée (mélange chênes verts/chênes pubescents)
14	forêt fermée conifères	forêt fermée (mélange conifère 6, pins noirs, sapins, chênes pubescents)

15	forêt fermée conifères	forêt fermée (mélange pin sylvestre, chêne vert, hêtre
16	forêt fermée conifères	forêt très fermée (mélange chênes verts, pins noirs, sapins, érables)
17	forêt fermée conifères	forêt plutôt ouverte (conifère 8 et quelques chênes pubescents)
18	forêt fermée feuillus	forêt fermée (essentiellement chênes pubescents avec quelques conifères 6)
19	forêt fermée à mélange de feuillus prépondérants et de conifères	forêt fermée (surtout chênes pubescents et quelques pins)
20	forêt fermée feuillus	forêt fermée (chênes pubescents)
21	forêt fermée à mélange de feuillus prépondérants et de conifères	forêt fermée (majoritairement hêtres avec quelques chênes pubescents)
22	forêt fermée conifères	forêt fermée (majoritairement pins noirs avec quelques chênes pubescents et charmes)
23	forêt fermée conifères	forêt fermée (majoritairement pins noirs avec quelques chênes pubescents)
24	forêt fermée à mélange de conifères prépondérants et feuillus	forêt fermée (chênes pubescents)
25	forêt fermée de chênes décidus purs	forêt fermée (chênes pubescents)

Remarque :

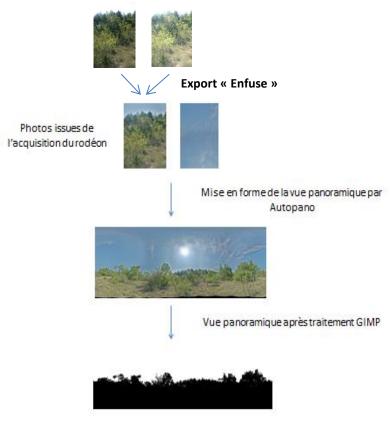
Nous n'avons pas réussi à trouver la façon dont était calculé le couvert forestier dans l'inventaire de l'IGN. Il a donc était difficile de définir la limite entre une zone ouverte et une zone fermée.

Le choix de la donnée terrain

Pour quantifier le couvert forestier nous avons décidé d'utiliser des données photos. La prise de vue panoramique étant donc bien adaptée à notre problème. Le Rodéon nous a permis d'automatiser la prise de vue panoramique. Il est constitué de deux moteurs permettant la rotation des deux axes perpendiculaires. Il est commandé à distance par ordinateur terrain grâce au logiciel Panodéon.

Manipulation terrain

Le matériel utilisé pour faire notre manipulation : 2 trépieds, 1 GPS R8, 2 embases, le Rodéon, l'appareil photo Nikon D70, l'ordinateur muni du logiciel Panodéon, 1 batterie. Nous avons besoin d'un GPS pour localiser précisément la placette.


Nous stationnons le GPS sur le point choisi. Une fois que le GPS a fini de tourner nous mettons en place le Rodéon. Nous choisissons alors deux temps d'exposition de l'appareil photo un spécifique à la zone la plus sombre et l'autre à la zone la plus illuminée. Une fois tous les paramètres réglés, on lance l'acquisition. L'appareil photo prend toutes les photos nécessaires pour faire la vue panoramique. L'acquisition faite, on exporte les données.

Le centre optique doit rester immobile durant toute l'acquisition. C'est pour ça qu'il a fallu régler la parallaxe du Rodéon en jouant sur la position de l'appareil photo par rapport à l'axe sur lequel il est accroché. (cf. Annexe 1)

b. Traitement

Panodéon

Ce logiciel installé sur l'ordinateur de terrain permet de se connecter au Rodéon et de contrôler l'acquisition de la prise de vue panoramique. Il permet également de régler les paramètres de l'appareil photo. A l'issue de l'exportation des 42 photos le logiciel Enfuse nous permet de fusionner les photos deux à deux avec chacune des temps d'exposition différents. Nous obtenons ainsi 21 photos à chaque prise de vue.

Autopano OPP

Ce logiciel permet de construire la vue panoramique, avec les 21 photos issues du logiciel précédent Panodéon. C'est à partir de cette image que l'on va faire le décompte des pixels pour calculer l'indicateur panoramique (IP).

Le logiciel GIMP nous permet de traiter les vues panoramique afin d'obtenir le résultat final : une image nous permettant de différencier les pixels ciel (blanc) des autres pixels (noir). (cf. Annexe 2 et 3)

L'image finale (image en noir et blanc) issue de GIMP devra nous permette de calculer l'indicateur panoramique.

c. Indicateur panoramique

L'indicateur panoramique est un indicateur qui nous permet d'évaluer le taux de couvert forestier lors de la prise de vue panoramique.

Indicateur pano = Nombre de pixels ciel / Nombre pixels total

IP = 0 => pas de ciel

IP = 1 => que du ciel

IP = 0.5 => autant de ciel que le reste

B. A partir des données LIDAR

La technologie Lidar (Light detection and ranging) désigne une technologie développée dans les années 1990, d'acquisition aéroportées (avion ou hélicoptère) de données altimétriques de la surface terrestre. Elle se base sur la télémétrie Laser (Light Amplification by simulated Emission of Radiation) couplée à un système de géo référencement spatiale (GPS).

a. Les données

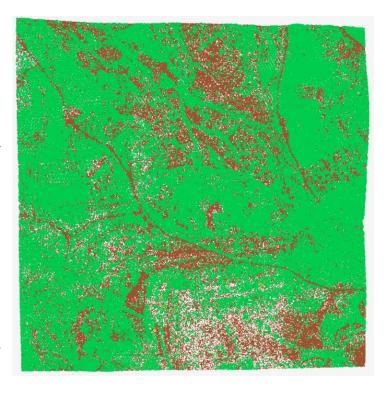
Nous avons douze zones de 1 km2 couvertes par lidar (cf. Carte des zones). Ce sont des fichiers de format .las contenant un nuage de points géo référencés. Chaque zone comporte environ trois millions de points et a une densité entre 1.88 et 3.46 points par mètre carré.

b. Logiciels

Nous avons à disposition une suite logiciel Lastool qui nous permet de traiter ces données lidar.

Lasview

Ce logiciel permet de visualiser le nuage de points.


Lasground, Lasheight, Lasclassify

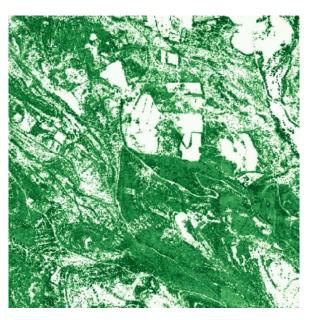
Notre première étape a été de classifier les points en quatre catégories :

- 1 = non identifié
- 2 = sol
- 5 = végétation
- 6 = bâtiment

Lasground nous a permis d'identifier les pixels sol (2).

Lasheight & Lasclassify nous ont permis de discriminer les bâtiments de la végétation.

Lasgrid


Ce logiciel découpe un nuage de point selon une grille en petites zones, il compte ensuite le nombre de points Lidar dans chacune de ces zones, le résultat obtenu est une image. Chaque pixel de l'image prend comme valeur le nombre de tous les points lidar dans la zone. Nous voulons deux images en sortie une avec le décompte des points sol et l'autre avec le décompte des points végétation afin de déterminer le taux de couvert forestier.

Gdal_calc

Ce logiciel permet d'effectuer un calcul avec les valeurs des pixels contenues dans les deux images précédentes. Ce calcul nous donne l'indicateur pour chaque pixel. Le résultat obtenu est une image de float géo référencée. (cf. Annexe 4)

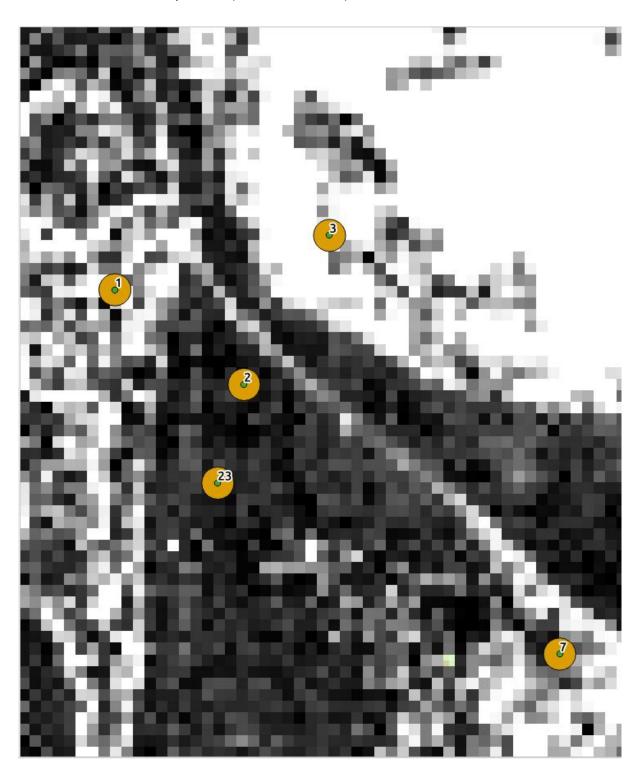
c. L'indicateur LIDAR

L'indicateur lidar est un indicateur qui permet d'évaluer le taux de couvert forestier.

Indicateur Lidar = A/ (A +B)

A = sol

B =végétation

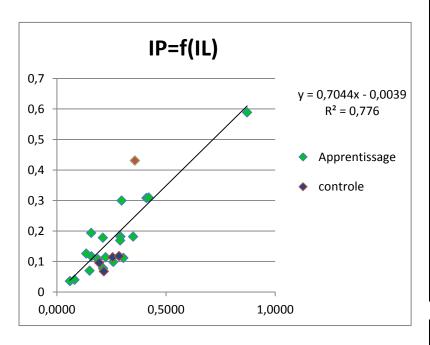

 $IL = 0 \Rightarrow pas de sol$

IL = 1 => pas de végétation

IL = 0.5 => autant de végétation que de sol

II. Analyse des résultats

Pour faire le lien entre la vérité terrain et les données lidar, il a fallu calculer l'indicateur lidar sur chaque placette. Nous avons utilisé le logiciel QGIS pour localiser les placettes dans l'image finale du traitement lidar pour ensuite calculer une moyenne des pixels concernés. On obtient l'indicateur lidar de la placette. (cf. Annexes 5 et 6)



A l'issue de la première partie nous obtenons d'une part l'indicateur de couvert forestier à partir des vues panoramiques faîtes sur chaque placette (IP) et d'autre part la valeur des pixels correspondant à chaque placette panoramique sur les images lidar (IL). Nous cherchons à modéliser le lien entre ces deux indicateurs, nous avons donc choisi de tracer l'IP en fonction de la valeur des pixels lidar pour chaque placette.

Nous avons tout d'abord placé 20 de nos placettes sans différenciation en apprentissage et 4 en contrôle afin de calculer un premier modèle. Puis nous avons séparé les placettes en trois catégories en fonction du peuplement : feuillus, conifères et mélange de feuillus et de conifères.

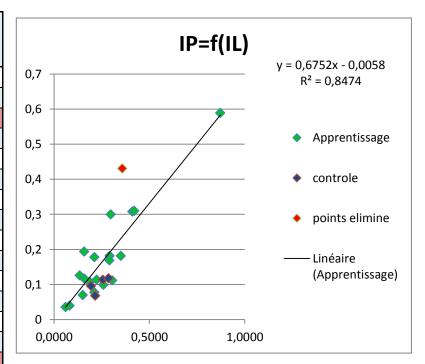
A. Premier Modèle général

Nous avons mis en place un premier modèle linéaire avec toutes les placettes. La droite décrit bien l'alignement des points, nous avons donc une relation de proportionnalité entre IL et IP.

Nous remarquons qu'un point présente un fort résidu (CHA4), nous avons donc reconstruit un modèle en ne le prenant pas en compte. Le coefficient de corrélation s'améliore, on peut donc penser à un problème d'acquisition (nous ne considèrerons plus ce point dans la suite).

APPRENTISSAGE	modèle : IP=0,7044*IL- 0,0039	delta (résidu)
CHA1	0,6101	0,0211
CHA2	0,1451	0,0671
CHA5	0,2106	0,0986
CHA6	0,1781	0,0791
CHA7	0,2852	0,0228
CHA8	0,2015	0,0195
CHA9	0,2925	0,0175
CHA10	0,1448	0,0332
CHA11	0,2004	0,0314
CHA12	0,1076	0,0094
CHA13	0,1532	0,0392
CHA14	0,0908	0,0352
CHA15	0,1017	0,0317
CHA16	0,0531	0,0131
CHA17	0,2052	0,0948
CHA18	0,2423	0,0603
CHA19	0,1281	0,0201
CHA20	0,1072	0,0868
CHA21	0,0383	0,0023

POINT ELIMINES		
CHA3		
CHA4	0,2478	0,1832

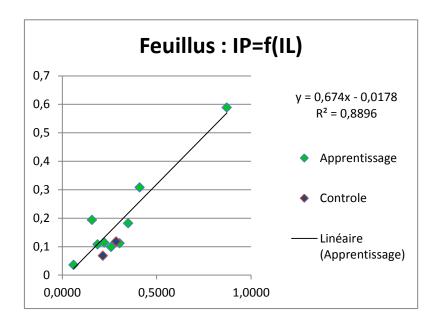

CONTRÔLE		
CHA22	0,1763	0,0623
CHA23	0,1327	0,0367
CHA24	0,1477	0,0797
CHA25	0,1971	0,0791

			IL (grid step 5)
APPRENTISSAGE	IP	écart type pixel	:
			moyenne
CHA1	0,589	0,1969	0,8717
CHA2	0,078	0,0696	0,2115
CHA5	0,112	0,0812	0,3046
CHA6	0,099	0,0490	0,2583
CHA7	0,308	0,2480	0,4104
CHA8	0,182	0,1072	0,2915
CHA9	0,31	0,1168	0,4208
CHA10	0,178	0,0543	0,2111
CHA11	0,169	0,1100	0,2901
CHA12	0,117	0,1534	0,1582
CHA13	0,114	0,0885	0,2231
CHA14	0,126	0,0893	0,1344
CHA15	0,07	0,0558	0,1500
CHA16	0,04	0,0465	0,0810
CHA17	0,3	0,1382	0,2969
CHA18	0,182	0,0649	0,3495
CHA19	0,108	0,0367	0,1874
CHA20	0,194	0,0708	0,1578
CHA21	0,036	0,0423	0,0598
POINT ELIMINES			
CHA3	SANS DONNEE	0,0310	0,9833
CHA4	0,431	0,2665	0,3573
CONTRÔLE			
CHA22	0,114	0,0369	0,2559
CHA23	0,096	0,0121	0,1940
CHA24	0,068	0,0657	0,2152
CHA25	0,118	0,0703	0,2853

modèle : IP=0,6752*IL- 0,0058	delta (résidu)
0,5828	0,0062
0,1370	0,0590
0,1998	0,0878
0,1686	0,0696
0,2713	0,0367
0,1910	0,0090
0,2783	0,0317
0,1367	0,0413
0,1900	0,0210
0,1010	0,0160
0,1448	0,0308
0,0849	0,0411
0,0955	0,0255
0,0489	0,0089
0,1947	0,1053
0,2302	0,0482
0,1207	0,0127
0,1007	0,0933
0,0346	0,0014

POINTS ELIMINES	
0,2355	0,1955

CONTRÔLE	
0,1670	0,0530
0,1252	0,0292
0,1395	0,0715
0,1868	0,0688

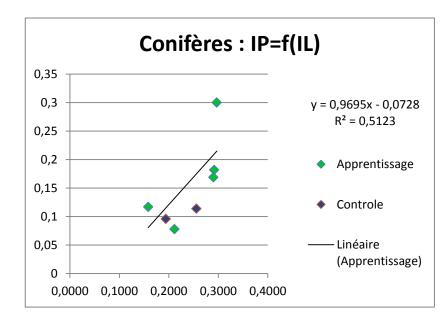

Le résultat calculé par le modèle est en pourcentage de recouvrement (CHA1 a 58% de recouvrement). Les résidus sont au maximum de 10%, et de l'ordre de quelques pourcents.

C'est assez satisfaisant pour un calcul du couvert forestier. Nous avons en effet un coefficient de corrélation de l'ordre de 85%.

B. Modèles différenciés suivant l'espèce

Nous avons essayé de savoir si l'essence des arbres avait une influence nos calculs. Nous avons donc différencié les feuillus, les conifères et les mélanges.

APPRENTISSAGE	IP	écart type pixel	IL (grid step 5) : moyenne	modèle : IP=0,674*IL- 0,0178	delta (résidu)
CHA1	0,589	0,1969	0,8717	0,5697	0,0193
CHA5	0,112	0,0812	0,3046	0,1875	0,0755
CHA6	0,099	0,0490	0,2583	0,1563	0,0573
CHA7	0,308	0,2480	0,4104	0,2588	0,0492
CHA13	0,114	0,0885	0,2231	0,1326	0,0186
CHA18	0,182	0,0649	0,3495	0,2178	0,0358
CHA19	0,108	0,0367	0,1874	0,1085	0,0005
CHA20	0,194	0,0708	0,1578	0,0885	0,1055
CHA21	0,036	0,0423	0,0598	0,0225	0,0135
					_
CONTRÔLE				CONTRÔLE	
CHA24	0,068	0,0657	0,2152	0,1273	0,0593
CHA25	0,118	0,0703	0,2853	0,1745	0,0565

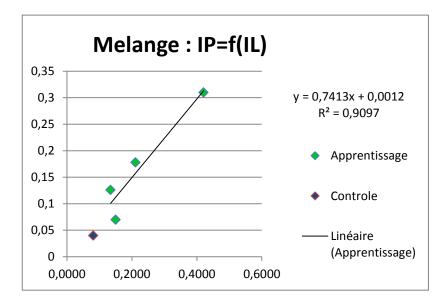


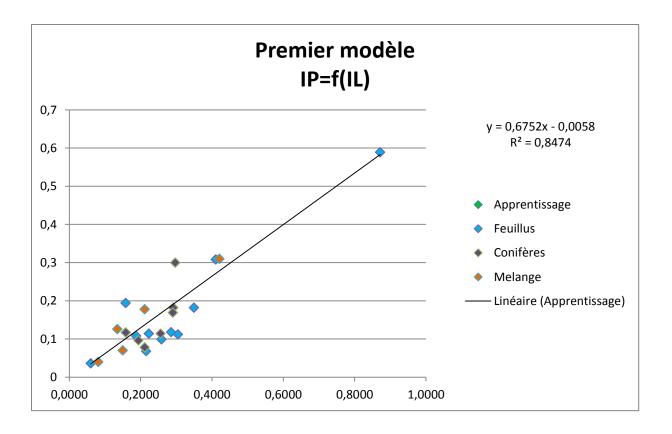
CONIFERES				
APPRENTISSAGE	IP	écart type pixel	IL (grid step 5) : moyenne	
CHA2	0,078	0,0696	0,2115	
CHA8	0,182	0,1072	0,2915	
CHA11	0,169	0,1100	0,2901	
CHA12	0,117	0,1534	0,1582	
CHA17	0,3	0,1382	0,2969	

modèle : IP=0,969*IL- 0,0728	delta (résidu)
0,1322	0,0542
0,2098	0,0278
0,2084	0,0394
0,0806	0,0364
0,2150	0,0850

CONTRÔLE			
CHA22	0,114	0,0369	0,2559
CHA23	0,096	0,0121	0,1940

CONTRÔLE	
0,1753	0,0613
0,1252	0,0292




MELANGE				
APPRENTISSAGE	IL (grid step 5) : moyenne			
CHA9	0,31	0,1168	0,4208	
CHA10	0,178	0,0543	0,2111	
CHA14	0,126	0,0893	0,1344	
CHA15	0,07	0,0558	0,1500	

modèle : IP=0,7413*IL+0,0012	delta (résidu)
0,3131	0,0031
0,1577	0,0203
0,1008	0,0252
0,1124	0,0424

CONTRÔLE			
CHA16	0,04	0,0465	0,0810

CONTRÔLE	
0,0612	0,0212

Nous remarquons que la modélisation des conifères se fait plus difficilement que celle des feuillus ou du mélange. Nous avons quelques hypothèses sur cette différence :

- Lors du traitement des photos panoramiques, que ce soit l'export (Enfuse) ou le traitement pas GIMP, la forme des feuilles (aiguilles ou feuilles) influe.
- Lors du traitement des photos panoramiques, le choix du temps d'exposition et le traitement GIMP sont faits manuellement. La forme des feuilles est peut-être plus sensible aux différences de traitement.

Il serait envisageable de faire des tests pour confirmer ou infirmer les hypothèses (automatisation du traitement GIMP, ne pas utiliser la fusion des images lors de l'export). Il faudrait également avoir un échantillon plus important de placettes, nous avons malheureusement manqué de temps pour cela.

Conclusion

Le premier modèle montre bien qu'il est possible de déterminer le couvert forestier avec la seule donnée Lidar avec une précision de quelques pourcents. Il faudrait étendre cette étude à d'avantages de placettes afin d'avoir un meilleur apprentissage et peut-être même mettre en évidence des différences entre les peuplements. Si plusieurs modèles se dessinent, les données Lidar associées à des données de couvert forestier permettraient de différencier plus facilement les peuplements.

Il nous a manqué une méthode de calcul claire permettant de quantifier la limite entre forêt ouverte et fermée telle qu'elle est décrite dans l'inventaire forestier. Nous aurions pu catégoriser de façon plus précise nos placettes et faire le lien avec la BD forêt.

Tête panoramique

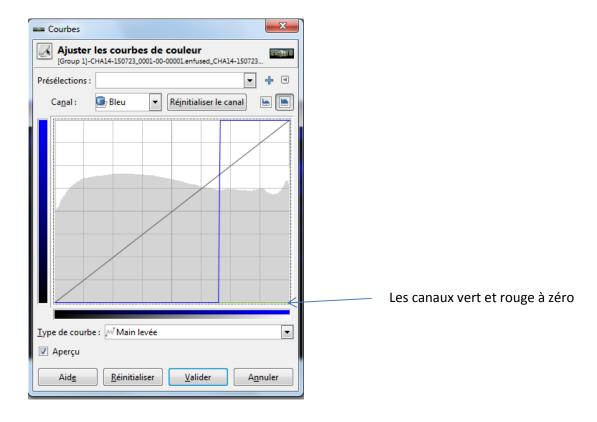
Réglage de la parallaxe

Le réglage de la parallaxe est essentiel pour que le centre optique de l'appareil photo reste immobile lors de chaque prise de vue.

Pour ce réglage, nous visons à travers l'objectif de l'appareil photo un trait vertical placé à une grande distance (>10m) de celui-ci comme une bordure de fenêtre, une antenne ou une arrête d'une maison...

Puis nous plaçons un fil à plomb à quelques pas de l'appareil de telle façon qu'il soit aligné avec le premier trait vertical lointain. Notre but est de déplacer l'appareil photo sur l'axe sur lequel il est accroché jusqu'à ce que les deux traits verticaux soient confondus.

Logiciel GIMP


Traitement des vues panoramiques

Le traitement des images est la deuxième étape qui suit l'acquisition des vues panoramiques. Elle consiste à différencier tous les pixels ciel des autres pixels. Pour cela nous avons coloré tous les pixels ciel en blanc et tous les autres en noir grâce au logiciel GIMP.

La première manipulation a été de délimiter grossièrement une zone de sol uniquement. Puis nous l'avons coloré en noir grâce au remplissage des couches sélectionnées. Nous devons également colorer des zones de la végétation qui sont très lumineuses (troncs d'arbres) qui pourraient ensuite avoir la même teinte que le ciel.

Ensuite dans l'onglet couleur, nous avons ouvert la fenêtre des courbes et nous avons fait varier les canaux r, v, b. Nous avons mis les canaux rouge et vert à zéro puis pour le canal bleu.

Le but est de mettre le canal bleu à zéro sur le premier objet à gauche (sol, végétation) sur la courbe puis de mettre le canal bleu à son maximum pour le deuxième objet (ciel) pour avoir bien deux couleurs distinctes. On compare en même temps à l'image réelle pour s'assurer qu'il n'y ait pas d'erreurs, comme du bleu sur les troncs ou les arbres qui débordent du fait d'une lumière trop importante.

Nous obtenons ainsi une image avec tout le ciel en bleu et tout le reste en noir.

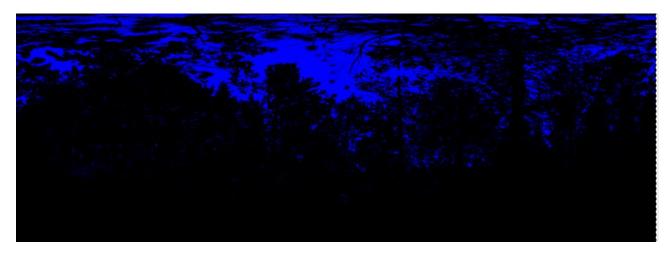


Image différenciée

Pour finaliser ce traitement d'image nous avons remplacé la couleur bleue par du blanc (grâce à l'outil sélection de couleur) pour faciliter la prochaine étape de calcul des pixels.

Image réelle

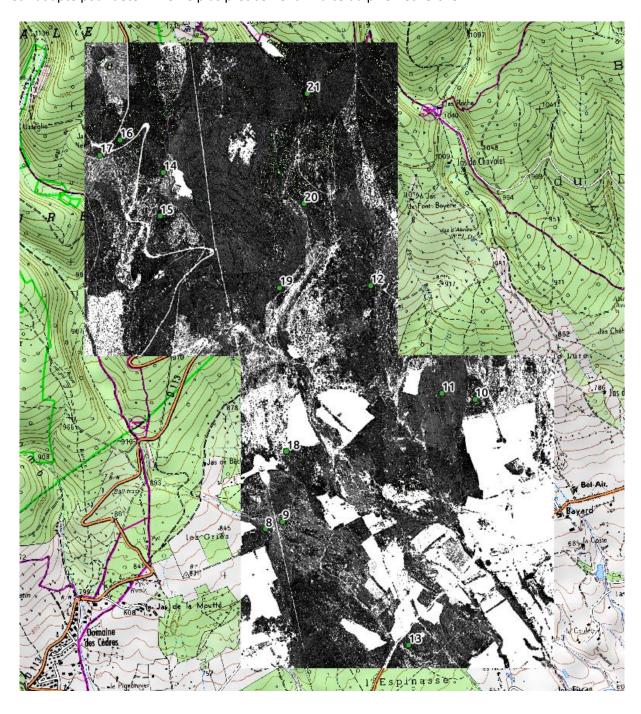
Image résultat

Logiciel GIMP

Calcul du pourcentage des pixels ciel

Grâce au logiciel GIMP, avec l'outil histogramme, nous avons relevé le pourcentage des pixels ciels sur toutes les images.

Puis nous avons calculé l'indice panoramique IP.

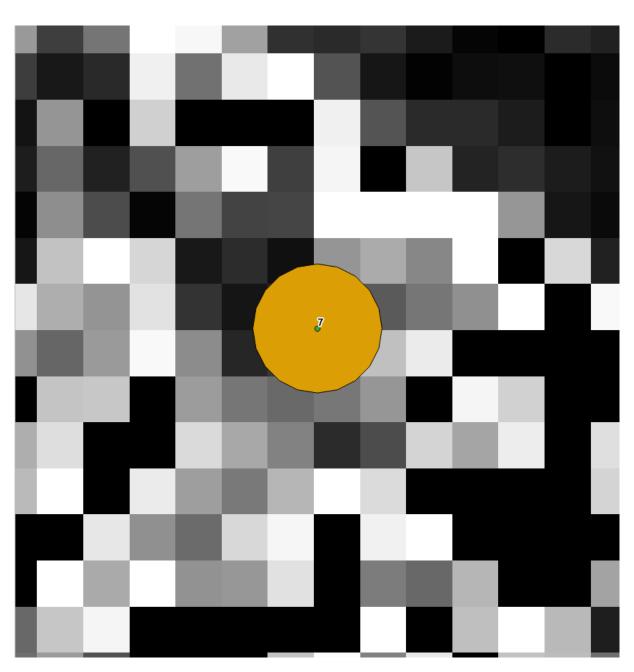

	pourcentage de ciel	pourcentage du reste	IP
CHA1	58,9	41,1	0,589
CHA2	7,8	92,2	0,078
CHA4	43,1	56,9	0,431
CHA5	11,2	88,8	0,110
CHA6	9,9	90,1	0,099
CHA7	30,8	69,2	0,308
CHA8	18,2	81,8	0,182
CHA9	31	69	0,310
CHA10	17,8	82,2	0,178
CHA11	16,9	83,1	0,169
CHA12	11,7	88,3	0,117
CHA13	11,4	88,6	0,114
CHA14	12,6	87,4	0,126
CHA15	7	93	0,070
CHA16	4	96	0,040
CHA17	30	70	0,300
CHA18	18,2	81,8	0,182
CHA19	10,8	89,2	0,108
CHA20	19,4	80,6	0,194
CHA21	3,6	96,4	0,036
CHA22	11.4	88.6	0.114
CHA23	9.6	90.4	0.096
CHA24	6.8	93.2	0.068
CHA25	11.8	88.2	0.118

Indice du pixel Lidar

Le but est de déterminer l'indice du pixel correspondant à la placette pano à partir des données lidar.

Pour cela on utilise le logiciel Lasgrid afin de séparer les différents éléments des données LIDAR. Dans notre cas on sépare le sol (indice 2) de la végétation (indice 5).

Nous avons fait varier la valeur du step dans le logiciel Lasgrid afin de déterminer le calque le mieux adapté pour déterminer le plus précisément l'indice du pixel recherché.



Le logiciel GDAL nous permet de créer les calques. La commande utilisée (pour une image) est :

Gdal_calc.py -A Forca_1.tif -B Forca_1_v.tif - outfile=result1.tif - calc= "A.astype (float)/ (A.astype (float) +B.astype (float)) " -- type=float32

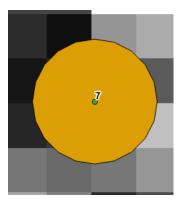
Avec calc= "A.astype (float)/ (A.astype (float) +B.astype (float)) ", on calcule la proportion de sol nu.

On peut ouvrir ces calques dans QGis et pour chaque pixel, on a une valeur codée entre 0 et 1. On utilise l'onglet « identifier les entités ». Une valeur proche de 0 correspond à une zone de végétation tandis qu'une valeur proche de 1 correspond à une zone nue, c'est-à-dire du sol.

Calcul des coordonnées des placettes

Après avoir choisi l'emplacement des placettes, il faut pouvoir les localiser précisément afin de comparer l'indice du pixel calculé avec les données lidar et l'indicateur à partir des vues panoramiques.

Nous utilisons le logiciel Leica Geo Office pour calculer les coordonnées planes (en Lambert93). Certains points présentaient toutefois des ambiguïtés trop importantes. Nous avons donc calculé les coordonnées de ces points avec l'outil RtkPost (voir script ci-dessous).


Dans la console de spyder :

```
import numpy as np
import pandas as pd
###lecture du ficher###
path="..." <- chemin pour le fichier d'entree ou de sortie de RTKPOST (faire glisser le fichier dans la
console)
tete=["GPST_date","GPST_time","x-ecef","y-ecef","z-
ecef","Q","ns","sdx","sdy","sdz","sdxy","sdyz","sdzx","age","ratio"]
df=pd.read_csv(path,delim_whitespace=True, comment="%",names=tete,header=0)
###calcul de la variance###
df['sigma']=df['sdx']**2+df['sdy']**2+df['sdz']**2
df['sigma']=np.sqrt(df['sigma'])
df['v']=1/(df['sigma']**2)
###calcul des coordonnées###
x=np.average(df['x-ecef'],weights=df['v'])
y=np.average(df['y-ecef'], weights=df['v'])
z=np.average(df['z-ecef'],weights=df['v'])
```

	Со	ordonnées pl	anes placett	es		
Nom		E	N	Hellips		
	1	918757,213	6321108,42	734,535		
	7	918950,387	6320950,18	713,756		
	6	919106,629	6320889	683,374		
	5	919164,793	6320325,69	668,383		
	4	918858,776	6320593,09	704,482	Calculóos av	ec Leica Geo
	3	918850,431	6321132,03	713,343		ice
	17	923093,014	6335280,72	1190,462	OII	ice
	2	918813,321	6321067,29	728,618		
	13	925070,156	6332146,78	749,827		
	20	924403,959	6334969,77	1072,9962		
	24	919238,149	6320901,94	648,6564		
	25	919015,892	6321618,93	682,4768		
	8	924155,259	6332889,13	871,272		
	9	924264,024	6332937,64	864,36		
	10	925495,178	6333719,57	873,847		
	11	925283,981	6333756,37	876,662		
	12	924828,15	6334446,8	987,249		
	14	923502,202	6335169,85	1133,228	Calculées a	vec RtkPost
	15	923479,277	6334890,03	1129,051		
	16	923220,959	6335378,19	1202,445		
	18	924289,807	6333384,8	881,152		
	19	924244,237	6334433,22	1009,986		
	21	924422,002	6335675,06	1137,437		
	22	919390,677	6320918,8	636,438		
	23	918801,885	6321024,45	735,017		

Création de Buffer

Dans QGis, nous créons des buffers sur les placettes afin d'avoir un modèle proche de la vérité terrain. A partir du calque créé avec Gdal.calc, on obtient une moyenne des valeurs du pixel (IL). La zone de la placette sur le calque correspond mieux à la zone des vues panoramiques. Le modèle sera donc plus précis.

Pour calculer la moyenne de la valeur des pixels situés dans le buffer, le script est le suivant :

```
#! /usr/bin/python
import sys
from rasterstats import zonal stats
import csv
# arg1: vector file
# arg2: raster file
#stats = zonal_stats(sys.argv[1], sys.argv[2], stats=['mean', 'std']) #'majority'
stats = zonal_stats(sys.argv[1], sys.argv[2], stats='*')
#copy_properties=True
#print(stats);
#recupérer la valeur de la moyenne, si la zone en question est ouverte, recalculer
#avec un autre rayon pour le buffer -> 2 fichiers buffer en entrée
with open(sys.argv[3], 'w') as outfile:
        fp = csv.DictWriter(outfile, sorted(stats[0].keys()))
        fp.writeheader()
        fp.writerows(stats)
```